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We calculate the mean velocity and the velocity correlation function for a 
random walk with a uniform bias on a disordered chain. We find a new long 
time tail in the velocity correlation function due to the combined effects of the 
bias and of the disorder in the site variables. This long time tail persists to a 
low-frequency cutoff inversely proportional to the square of the bias. By 
associating the velocity correlation function with the spectrum of current fluctu- 
ations, we calculate the excess low-frequency current noise associated with this 
long time tail. The spectrum of current fluctuations goes as (12 /N) f  - 1/2, where 
I is the DC current, N is the number of charge carriers, and f is the frequency. 
The possible connection to 1 / f  noise is discussed. The calculation is done by a 
perturbation expansion in the strength of the disorder, but is shown to be exact 
to all orders for weak enough bias. 

KEY WORDS: Random walk; disorder; current fluctuations; long time 
tails; 1 / f  noise. 

1. INTRODUCTION 

One-dimensional random walks with static disorder are the subject of 
considerable current interest. (1-14) The effect of disorder for transition rates 
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obeying detailed balance is now well understood. (1 l l~ These random walks 
can be used to model the equilibrium properties of one-dimensional disor- 
dered conductors. (7's~ By using the Einstein relation, the weak field conduc- 
tivity of these systems can also be analyzed. On the other hand nonequilib- 
rium properties, such as the spectrum of excess current fluctuations in the 
presence of a DC current, cannot easily be determined from an equilibrium 
model. Thus it is important to understand the properties of nonequilibrium 
random walk models. 

In this paper we study a biased disordered random walk governed by 
the master equation, 

dP~(t) 
dt - ~a TnmPm(t) (1.1) 

m 

with the transition matrix Tnm given by 

Tnm= e'(Wm/Cm)Sn,m+ 1 + e-C(Wm_l/Cm)Sn,m_l 

- e ' (Wm/Cm)8n ,m - e - ' ( W m _ , / C , , , ) 8  .... (1.2) 

P,(t)  is the probability that the walker is at the nth lattice site at time t. W, 
is the transition rate between sites n and n + 1, and C~ is the well depth at 
the nth site. The equilibrium concentration of walkers at site n is propor- 
tional to C,. The factor ~ determines the bias. For a conductivity problem it 
can be identified with the ratio of the electrical energy gained per hop to 
the thermal energy 

e = e • l / 2 k T  (1.3) 

where e is the charge per carrier, o~ is the electric field, l is the lattice 
spacing, k is Boltzmann's constant, and T is the temperature. The choice 
for e given in (1.3) insures that Pn would take the correct local equilibrium 
form, proportional to C~exp(nelo~/kT), if the chain were closed at both 
ends. 

The random walk described by (1.1) and (1.2) is disordered if the 
parameters W~ and C, are chosen to vary randomly with n. If C is constant 
and W is random we have bond disorder. If W is constant and C is random 
we have site disorder. In the present paper we consider primarily the case of 
site disorder. We study the site disorder problem first because it is mathe- 
matically simpler, and more clearly displays the new, specifically nonequi- 
librium effects of disorder. Results for bond disorder will be presented in a 
subsequent paper. 

The equilibrium (e = 0) properties of (1.1) and (1.2) for the case of 
bond disorder have been studied by a number of authors. (1'2'4-1~ One of 
the interesting results in this case is power law behavior in the frequency- 
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dependent conductivity or, equivalently, in the velocity correlation func- 
tion. This "long time tail" effect has been found in several other stochastic 
models,(~5,16) and is closely related to the long time tails found in fluids (I7) 
and Lorentz gases. (18) 

Derrida and Orbach (12) have studied the nonequilibrium properties of 
(1.1) and (1.2) for the case of bond disorder. They calculated the frequency- 
dependent conductivity in the presence of a steady current. An interesting 
feature of their result is that it separates into two frequency regimes. At the 
lowest frequencies the motion of the particles is dominated by a steady 
drift, whereas for intermediate frequencies it is dominated by diffusion. In 
the diffusion-dominated regime there are long time tail effects similar to 
those found in equilibrium, whereas in the drift-dominated regime these are 
replaced by a behavior which is analytic in frequency. 

The equilibrium properties of (1.1) and (1.2) for the case of site 
disorder have been studied in Refs. 3 and 9 and have certain simplifying 
features. Because of the spatial isotropy of the master equation (16) there are 
no long time tails in the velocity correlation function or the frequency- 
dependent conductivity. The effect of site disorder first appears in the 
fourth cumulant (3), ~X4(/))- 3(x2(t))  2 or, equivalently, in a frequency- 
and wave-number-dependent diffusion coefficient. By adding a bias, spatial 
isotropy is broken and, as we shall calculate, long time tails appear in the 
velocity correlation function and in the current fluctuations. As in the case 
of bond disorder, these long time tails arise only in the diffusion dominated 
regime. 

An intriguing aspect of this new long time tail is that it leads to current 
fluctuations which are similar in several respects to the ubiquitous phenom- 
enon of 1If noise. (2~ In both cases the strength of fluctuations is propor- 
tional to the square of the current, and inversely proportional to the 
number of carriers. In both cases the spectrum is a power law over a 
number of decades in frequency, but here the power law is f-1/2 rather 
than f - 1 .  In the last section we discuss the connection between this result 
and a recent model (2m2) for 1If noise based on a random walk with a 
random bias. (14) 

The outline of the paper is as follows: In Section 2 the response 
function is defined and related to the moments of the displacement, the 
velocity correlation function, the current, and the current fluctuations. In 
Section 3 a formally exact expression for the response function in terms of 
the fluctuating quantities is presented. In Section 4 and Appendix A results 
are presented for the quantities of physical interest calculated to second 
order in the fluctuating quantity (C m - 1). In Section 5 we show that these 
results hold to all orders in perturbation theory for sufficiently weak bias. 
The paper closes with a discussion. 
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2. F O R M A L I S M  

In this sectiola we define the response function, and show how it can 
be used to calculate the various quantities of physical interest; the moments 
of the displacement, the mean velocity, the velocity correlation function, 
the steady state current, and current fluctuations. We begin by formally 
solving the master equation using Laplace transforms. Let 

~ ( z )  = fo~e-Z 'Pn( t ld t  (2.1) 

The formal solution to the master equation is 

P.(z)  = ~ Gnm(z)Pm(O ) (2.2) 
m 

where G~m(Z ) is the Green's function for the walk. Using matrix notation 
G = G n m  i s  defined by 

G(z) = [ z l  - T ] - '  (2.3) 

where 1 is the identity matrix. 
Suppose that Qm is the stationary solution to the master equation 

corresponding to a steady current. We choose the normalization such that 

M 

NQm=l 
m = l  

where M is the number of sites on the chain. The response function f (q ,  z) 
is defined as the product of the Green's function and the stationary 
distribution, 

f (q ,  z) = 2 e ,q,(n - m)Fn m (z) (2.4) 
m n  

with 

Fnm(Z) = ( Gn,~(z) Qm) (2.5) 

The brackets indicate an average over the probability distribution for the 
W's and the C's. 

The mean displacement/xl(t ) and the mean square displacement/~2(t) 
can be obtained from the response function by differentiation with respect 
to the wave number q. Their Laplace transforms are given by 

#~(z) = ~ l(n - m)F,m(z  ) = - i n~- 2 f (q ,  z) (2.6) 
m n  v t ~  q = 0 

and 

#2(z) = m ~n 12(n - m)ZF"m(Z)= - ~q2~2 f (q ,  z) q=~ (2.7) 
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In these expressions we have averaged first over the stationary distribution 
and then over the disorder. The average over the disorder can either be 
interpreted physically as representing the results of an experiment per- 
formed on a large number of parallel chains, or this average can be viewed 
simply as a mathematical convenience. In general we expect that averaging 
over a single long chain should be equivalent to averaging over an ensem- 
ble of shorter chains. 

With an additional assumption, /~l(t) and /~2(t) can also be used to 
calculate the current fluctuations. We assume that the instantaneous cur- 
rent can be identified with the spatially averaged velocities of the charge 
carriers, 

N 

i(t) = (e /L)  ~ vj(t) (2.8) 
j = l  

where vj(t) is the velocity of the j th  carrier, L is the length of the sample, 
and N is the total number of charge carriers. Since the carriers move 
independently the mean current, I, can be related to/~l(t), 

I = (eU/L) (v )  =- (eN/L)  d~,(t)/dt (2.9) 

We can also relate the spectral density of the current fluctuations to/x2(t ). 
The spectral density of current fluctuations, Pl(0~) is defined by 

P, (r = 4f0~ [ {i(t)i(O)) - I2]cos(cot)at (2.10) 

For independent charge carriers Pl(~0) is proportional to the velocity 
correlation function ~(t) defined by 

1 d 2 [d /x , ( t ) ]  2 
r  2 dt 2 tx2(t)- ~ (2.11) 

Combining Eqs. (2,8)-(2.11) we obtain 

P, (w) = (4e2N/ LZ)Re ~(i~o) (2.12) 

3. RESPONSE FUNCTION 

In this section we specialize to the case of site disorder, and derive an 
expression for the response function in terms of the moments of the 
random variables, {CA). We assume the distribution of the C A to be 
sufficiently nonsingular that all moments exist. Without loss of generality 
we choose ( C ~ ) -  1, and W . -  v. We assume that the C A are indepen- 
dently and identically distributed random variables. In order to find a 
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moment expansion for the response function, we split the transition matrix 
T and the Green's function G into a bare part and a fluctuating part. Let 

AT = T -  T ~ (3.1) 

where T ~ is the transition matrix for a uniform system with C n ~ 1 and 
Wn -- v [see Eq. (1.2)], 

TOm = v[e'8,,m+ , + e ~Sn,m_ I - -  2coshr (3.2) 

From (2.3) and (3.1) it is straightforward to verify that the Green's function 
can be written 

G = G o + G~ - GOAT] lG~ (3.3) 

where G ~ is the bare Green's function, 

G o = [ z l  - T ~  (3.4) 

For the site disorder problem AT takes the simple form, 

AT = T~ (3.5) 

where the matrix AS is given by 

AS.m = -- 6 . m [ ( C m  - l ) / C m ]  (3.6) 

Thus (3.3) can be rewritten 

G = GO+ G~176 - G~176 'G ~ (3.7) 

It is very useful to write the Green's function explicitly in terms of the 
basic fluctuating quantities (C,  - 1 ). Defining the matrix 6 C by 

8C~m = 8 , m ( C  m - 1) (3.8) 

and using the identity 

G~176 zG ~  1 (3.9) 

we can write the fluctuating part of the Green's function as 

AG ~ G -  G ~  - ( z G ~  I ) 6 C [ I  + z G ~  ~ (3.10) 

The form of the Green's function in (3.10) will be exploited in Section 5 to 
show that results presented in Section 4 are exact for small e even when 8 C  

has large fluctuations. The method of writing the Green's function in terms 
of the basic fluctuating quantities was first used by Zwanzig (5) in analyzing 
the unbiased bond disorder problem, and later by Denteneer and Ernst (9) 
for both the unbiased bond disorder and the unbiased site disorder prob- 
lem. 
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In order to calculate the response function we need to know both the 
Green's function and the steady state solution, Qn, of the master equation. 
For the site disorder problem this solution can be found by direct substitu- 
tion, and is given by 

Qm = Cm/M (3.11) 

where M is the total number of lattice sites and we have normalized the 
sum o v e r  Qm to  unity. Substituting (3.11) into (2.5) we obtain 

MF = G O + (AG) + (AGSC) (3.12) 

where 2xG is given by (3.10). After some matrix algebra this can be written 

MF = G O + (zG ~  1)l(zG ~  1) (3.13) 

where the matrix I is defined by 

I =  (8C[1 + zG~176 (3.14) 

In (3.12)-(3.14) we have used (8C)  = 0. Since the average is translationally 
invariant we can explicitly take the Fourier transform and obtain the 
response function f(q, z) defined in (2.4), 

f (q , z )  = g(q,z) + {g (q , z ) [ z  - g - ' (q , z ) ] }2I (q , z )  (3.15) 

In (3.15), g(q,z) is the Fourier transform of the bare Green's function 

g(q, z) = ~ eiqlnG~ ) 
H 

= ( z -  2v[cosh(iql + s - c o s h s  } - I  (3.16) 

and I(q,z) is the Fourier transform of the right-hand side of (3.14). 
We can now use (2.6)-(2.7) to calculate the mean displacement and 

mean squared displacement. Since the leading term in an expansion of 
(z - g -  l) in powers of q is of order q, the first moment of the displacement 
is independent of the disorder, and is given by 

f,,(z) = (2vlsinhe)/z  2 =-- ( v ) / z  2 (3.17) 

For the same reason, the mean square displacement depends only on 1(0, z) 
and can be written 

/~2(z) = 2D(e )z -2  + 2(v)2z 3 + 2(v)2i(O,z)z 2 (3.18) 

where D ( e ) =  vl2coshe is the diffusion coefficient. The first two terms in 
(3.18) are expected in the absence of disorder due to diffusion and drift, 
respectively. The third term gives the interesting extra contribution when 
both a bias and disorder are present. 
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4. RESULTS 

In this section we present results for the physically important quanti- 
ties; the current, the velocity correlation function, and the current fluctua- 
tions. The results presented here are valid only to second order in 8C. I n  
Section 5 we show that these results are exact to all orders in 6G in the 
Ohmic regime where c is small. 

Using (2.9) and taking the inverse transform of (3.17) we find that the 
steady current is given by 

I = N e ( v ) / L  (4.1) 

with @)  given by (3.17). In general ~ will be small since it measures the 
ratio of electric energy gained per hop to thermal energy. If (3.17) is 
expanded to first order in e we recover Ohm's law. Equation (4.1) is 
conveniently written in the form 

I = ne21Md ~ = V / R  (4.2) 

where the mobility/~ is given by 

= v l 2 / k T  (4.3) 

A is the cross-sectional area of the sample, n is the density of carriers, V is 
the voltage, and 

R = (L/ ixne2A)  (4.4) 

is the resistance of the sample. Note that (4.3) is the Einstein relation since 
pl 2 = D O is the equilibrium diffusion coefficient. 

To calculate the velocity correlation function we must expand I(0, z) to 
order 6C 2. Carrying out this expansion on the Fourier transform of (3.14) 
we obtain 

I(O,z)  = AcG~ (4.5) 

where 

2x C = ((C~ - 1) 2) (4.6) 

In deriving (4.5) we have used the fact that the C,,'s are not correlated from 
site to site. In Appendix A we derive a general expression for the Green's 
function which gives 

G~ = +(z) = [ 2  "2 --[-- 4zv cosh �9 + 4v2sinhZ�9 1/2 (4.7) 

Using (2.1 1), (3.17)-(3.18), and (4.5)-(4.7) the velocity correlation function 
is given by 

~(z)  = D(e)  + (v)2Ac+(Z) (4.8) 
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where 

D(e) = d2coshc = Docosh e (4.9) 

Notice that q~(z) is independent of z when (v)  = 0. This is due to the fact 
that, in the absence of a bias, the random walker always jumps with 
probability 1/2 to the right or to the left so that the velocity of the walker is 
delta correlated. (16) This symmetry makes the random site problem consid- 
erably easier to solve than the random bond problem. 

In the presence of a drift there are several frequency ranges of interest. 
We consider only low frequencies ]z] << v, so that we average over many 
hops. For the disordered random walk with drift this low-frequency range 
is further subdivided depending on whether drift or diffusive spreading 
dominates the sampling of the randomness. The crossover frequency is 
given by 

% = e2v << v (4.10) 

Introducing a dimensionless frequency variable 

x = z / %  (4.11) 

and expanding e~(z) to first order in e holding x fixed yields 

~(z) = D o I I +  2]c]Ac(x + 1) -1/2] (4.12) 

In the drift-dominated regime where Ix I << 1, (4.12) reduces to 

~(z) = Doll  + 2Ic]Ar (4.13) 

We can interpret (4.13) as a nonequilibrium renormalization of the diffu- 
sion coefficient. An interesting feature of (4.13) is that it is nonanalytic in 
the bias strength at E = 0. 

In the diffusion-dominated regime where % << Izl << v, (4.12) reduces to 

q](z) = Do[1 + 2e2A~(v/z) '/2] (4.14) 

The z-1/2 behavior in the diffusion-dominated regime is a new nonequilib- 
rium long time tail phenomenon. 

The physical interpretation of these results is best appreciated by 
looking at the spectrum of current fluctuations. For simplicity we look only 
at the drift- and diffusion-dominated regimes of (4.13) and (4.14). To relate 
@z) to the current fluctuations we use (2.12), (4.3), (4.4), and (4.9). In the 
drift-dominated regime ~o << % we obtain from (4.13) 

Pi(r = 4 k T R  - I l l  + 2[elk~] (4.15) 

which is a renormalization of the equilibrium Johnson noise. 
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In the diffusion dominated regime % << o~ << v, we obtain from (4.14) 

P~(~o) = 4 k T R - I [ 1  + ~e22xc(v/~o)'/21 (4.16) 

which contains an interesting frequency dependence. In deriving (4.14) and 
(4.16) we expanded to first order in e for x fixed, but the result is also 
correct to second order in e for frequencies in the diffusion-dominated 
regime. To see the physical content of (4.16) more clearly we rewrite it 
using (3.17), (4.1), and (4.9) to give 

Pl(~o) = 4kTR 1 + ~/~Ac(i2/N)(~v)-1/2 (4.17) 

The range of frequencies over which this power law behavior can be 
exhibited in Pl(o0 can be quite large. The hopping frequency v is typically 
rather high. The crossover frequency ~0 c can be calculated in the same way 
we obtained (4.17) from (4.16), and is given by 

~c = 1 2 R / 4 x k T  (4.18) 

We see that ~% is just the ratio of the power dissipated per carrier to the 
thermal energy. At low currents in the Ohmic regime this will be a very low 
frequency so that the w-1/2 behavior of the current fluctuations may be 
present over several decades of frequency. Our simple model system 
exhibits " 1 / - f f  noise." 

5, EXACT RESULTS IN THE OHMIC REGIME 

In Section 3 we derived a general expression for ff2(z) in terms of the 
quantity I(0,z)  which depended on all the moments of the random matrix 
8C. In Section 4 we expanded I(O,z) up to second order in (C, - 1) and 
then further expanded the results to first order in r while holding x = z/pe 2 
fixed. In this section we examine the contribution of higher powers of 8C. 

From (2.11) and (3.18) we obtain the full expression for ~(z), 

@(z) = p/2coshr + 4~'2/21(0, z)sinh2e (5.1) 

Expanding (3.14) as a (matrix) geometric series yields a moment expansion 
for I(0, z) 

,,(O,z) ,.=2o(- z)r [(8CG~ = ( 5 . 2 )  
n ~ - - o o  

To illustrate how the terms in this series contribute to ~(z), consider the 
coefficient I (2), of z 2 in (5.2), 

1(2)= ~ ( [  SCGOSCGOSCGOSC ].o) (5.3) 
n ~ - - oo  
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Pjk 

and 

Since (C  m -  1 ) = 0  and ( ( C m - - 1 ) ( C , - 1 ) ) = A c 6 m ,  this term can be 
factorized in exactly four ways. 

Using the expression for G o obtained in the Appendix, 

G~ = ek'x(z)lkl~(Z) (5.4) 

we obtain 

l~Z) = ~p3(Da + A2c[ P,, + eo 2 + P,3])  (5.5) 

where ~k represents geometric sums of the X factors and Boltzmann 
factors, 

k eJ'X Ik'l= 1 + (e-J 'x  - k -  1) '+ (eJ'x - k -  1)- '  (5.6) 
/ / ~  - - G O  

D 4 = ((C,  - 1) 4) - 3A2~ (5.7) 

is the fourth cumulant of the fluctuation parameter. 
We now expand 1 (2) to lowest order in ~ holding x fixed. To this order 

~(z) and X(z), given in (A7) and (AS) reduce to 

~(Z) = (2PI~I)-I(X + 1)-1/2+ O(s O) (5.8) 

and 

X(Z) = 1 - [ , { ( x  + 1) ' /2+ O(c 2) (5.9) 

Using (5.9) the sums Pjk, to leading order in c, are given by 

~ = 21,1-'k(x + 1)l/2Ek2(x + 1) - j 2 ] - l +  0( ,  0) (5.10) 

Combining (5.5), (5.8), and (5.10) we obtain 

[ 1 1 + 3 ]+ 
z21(2) - -  4v(x + 1) L x + 2x +~----2 9x +-----'8 O(IcI) (5.11) 

d 

By the same reasoning that leads to (5.11) we obtain 

zI  (') = [D3/4v (x  + 1)] + o(lel) (5.12) 

and 

1(~ = ~ c  = (~c/2~tcl)(x  + 1 ) - ' / 2 +  o ( c  ~ (5.13) 

In (5.12) D 3 is the third cumulant of (C~ - 1). 
Comparing (5.11), (5.12), and (5.13) we see that only 1 (o) contributes 

to ~(z) to order ]el, whereas 1 (1) and 1 (2) both contribute to order e2. We 
now show that no higher moments contribute to ~(z) to order le[. The 
general term 1 (r) is proportional to ~r+,. In addition there are at least 
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qr + 1 Kronecker 8 functions occurring in the factorization of the average 
owing to the fact that @ G ) =  0. The quantity qr denotes the greatest 
integer less than (r /2) .  Each 6 function removes one summation implicit in 
the matrix product so that there are, at most, ( r -  qr) sums; each of the 
form Pj~. with k > j .  Using (5.8)-(5.10) we can put an upper bound on the 
dependence of  z ~I (r~ 

z 7  (r) ~ lel (qr-') (5.14) 

The asymptotic inequality (5.14) proves that the expression for ~(z) 
given in (4.12) is exact to order le[ in an expansion in which both x = z /uc  2 
and the distribution of the fluctuating parameters are held fixed. Similarly 
(4.15) and (4.16) are asymptotically correct to order lel, and (4.16) is correct 
to order c a for frequencies in the diffusion-dominated regime o~ >> ~,e 2. 

If e is small but finite we can estimate when the lowest-order term in 
the perturbation theory dominates the higher order terms by comparing 
(5.11) and (5.13). We see that the ratio of the 2xc to the zX2~ term goes like 
cA~x ~/2 for x >> 1. Thus the perturbative results of Section 4 are expected to 
be valid when ezX~x ~/2 is small. In this regime the current noise due to the 
disorder is much smaller than the Johnson noise. However it may be 
detectable because of its unique frequency dependence. It would be inter- 
esting to construct a nonperturbative theory of current noise due to 
quenched disorder. 

6. D I S C U S S I O N  

We have calculated a new "long time tail" in the velocity correlation 
function associated with the combined effects of site disorder and a weak 
bias. This is related to the long time tail which occurs in equilibrium in the 
fourth cumulant of the displacement. (3) In both cases the fluctuation 
correction arises from the diffusive sampling of the randomness. The new 
long time tail found here differs from equilibrium long time tails in that it 
appears only above a crossover frequency, ~0 c given in (4.18). Below this 
frequency the behavior of the velocity correlation function is analytic in 
frequency though nonanalytic in the strength of the bias. 

We have calculated the same quantities for the random bond problem. 
The results are more complicated and yield different power law behavior 
largely due to the more complicated structure of the nonequilibrium steady 
state (12) in the combined presence of a bias and bond disorder. These 
results will be presented in a subsequent paper. (23) 

It is interesting to examine the connection between the present disor- 
dered random walk model, the phenomenology of " l / f  noise," and other 
recent theoretical attempts (21'22~ to relate 1 / f  noise to disordered random 
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walks. In the present model we have made a specific assumption [see (2.8), 
(2.11), and (2.12)] relating the current noise spectral density to the mean 
square displacement of a charge carrier. In the diffusion-dominated regime 
we obtain a proportionality of P~(~0) to ( I2 /N) ,  in agreement with phenom- 
enology. This emphasizes that excess current noise is observed in the 
current noise spectral density only in the presence of a DC current. [It is 
true that 1 I f  noise can be observed at equilibrium, (z4) but the equilibrium 
quantity which exhibits this noise is a complicated four time voltage or 
current correlation function. (z5'26)] On the other hand our calculation gives 
an f -~ /2  frequency dependence, which is quite far from the nearly f - t  
dependence typically observed. 

The recent papers by Marinari et al. (21'22) give a calculation on the 
spectrum of the displacement of a random walker on a chain with a 
random bias. (14) At each site there is a probability ~r to jump to the right 
and 1 - ~ r  to jump to the left. The probability 7r is itself uniformly 
distributed in the range from zero to one at each site. The resulting 
spectrum is nearly proportional to l / f .  In this model the displacement of 
the random walker cannot be the position of a charge carrier, but must be 
some more abstract quantity such as the resistance of the sample. It is 
interesting to search for physical models in which the resistance would 
perform such a random walk. 

To summarize, we have calculated the velocity correlation function 
and the spectrum of current fluctuations for a site disordered chain with a 
net current flow. We have obtained a new long time tail associated with the 
combined effects of disorder and current flow, and the resulting current 
fluctuations have some features in common with the ubiquitous phenome- 
non of l / f  noise. It remains to be seen if the connection between random 
walks in disordered media and 1 / f  noise can be made more explicit in 
terms of physically realistic random walks. 

APPENDIX 

In this Appendix we derive an expression for the uniform system 
Green's function in coordinate space, G~ Taking the Fourier trans- 
form of (3.4) using (3.2) we obtain the Green's function in q space, 

G~ = (z  - 2~'[cosh(iql+ ~) - cosh(e)] } - l  (A1) 

Using the Fourier inversion formula we find the following integral expres- 
sion for GO+ k,, (Z), 

G o ~ 1 2 ~ r d q  e - iqk ,+k,, = (//2~r) ~ (q ,z )  (A2) 
J0 
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(A2) can be evaluated by making the substitution s = exp(iql), yielding 

G O s ,+k,n = (i/2vr) dss-k[s2ve  ~ -  s (z  + 2vcosh(e)) + ve ~] i (A3) 

where the contour C is a positively oriented unit circle centered at s = 0. 
The roots of the quadratic in the square bracket in (A3) are 

r e = ( e - ~ / 2 v ) { z  + 2v cosh(e) _+ [z 2 + 4zvcosh(e)  + 4v2sinhZ(e)]1/2} 

(A4) 

For Re(z) > 0 only r lies within C. Noting that (A3) is invariant under the 
interchanges e -~ - e and k ~ - k and using the residue theorem we obtain, 

G~ = ek'x(z)lkl~(Z ) (A5) 

where 

q,(z) =-- G~ = f z  2 + 4zv cosh(e) + 4v2sinh2(e)] ,/2 (A6) 

and 

X(Z) = [z + 2v cosh(e) - t ) ( z ) - ~ ] / 2 v  (A7) 
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